Задание 6 из ЕГЭ по математике (профильной). Страница 5
В равнобедренной трапеции длины оснований 21 и 9, а длина высоты 8. Найдите диаметр описанной около трапеции окружности.
Средняя линия трапеции равна 10 и делит площадь трапеции в отношении $3:5$. Найдите длину большего основания трапеции.
Диагонали четырёхугольника равны $6$ и $9$ (см. рис.). Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного четырёхугольника.
В параллелограмме $ABCD$ $AB=20$, $\cos A={4} / {5}$. Высота, опущенная из вершины $D$, пересекает сторону $BC$ в точке $H$. Найдите площадь треугольника $CDH$.
Дан ромб $ABCD$ c острым углом при вершине $A$. Площадь ромба равна $135$, а $\sin∠ A={3} / {5}$. Высота $DK$ пересекает диагональ $AC$ в точке $L$. Найдите длину отрезка $DL$.
Определите тангенс острого угла параллелограмма, если его высоты равны $3√ {2}$ и $5√ {2}$, а периметр равен $32$.
Определите синус острого угла параллелограмма, если его высоты равны $5$ и $7$, а периметр равен $48$.
В параллелограмме $ABCD$ проведена высота $CH$ к стороне $AD$. Косинус угла $A$ равен $-{√ {5}} / {5}$, а сторона $AB$ равна $2√ 5$. Прямая $BH$ делит диагональ $AC$ в отношении $3:5$, считая от верши…
В параллелограмме $ABCD$ биссектриса угла $B$ пересекает сторону $CD$ в точке $M$ и прямую $AD$ в точке $N$. Найдите периметр треугольника $ABN$, если $MD=5$, $MN=4$, $BM=6$.
В параллелограмме $ABCD$ биссектриса угла $D$ пересекает сторону $AB$ в точке $K$ и прямую $BC$ в точке $P$. Найдите периметр треугольника $BKP$, если $DC=10$, $PK=6$, $DK=9$.
В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекают сторону $AD$ в точках $L$ и $K$ соответственно. Найдите площадь параллелограмма $ABCD$, если известно, что $BL=6$, $CK=8$ и $AB:AD\!=\!1:3$.…
В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите площадь параллелограмма $ABCD$, если известно, что $BL=6$, а периметр $▵ CDL$ равен …
В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите периметр параллелограмма $ABCD$, если известно, что $CL=12$, а площадь $▵ ABL$ равна…
В треугольнике $ABC$ угол $C$ равен $90°$, $AB=30$, $AC=18$. Найдите синус внешнего угла при вершине $A$.
Сумма двух углов треугольника и внешнего угла к третьему равна $70°$. Найдите третий угол треугольника. Ответ дайте в градусах.
Острые углы прямоугольного треугольника равны $38°$ и $52°$. Найдите угол между высотой и медианой, проведёнными из вершины прямого угла (см. рис.). Ответ дайте в градусах.