Задание 19 из ЕГЭ по математике (профиль): задача 65

Разбор сложных заданий в тг-канале:

На столе перед нумизматом лежит 2025 монет орлом кверху. За один ход нумизмат переворачивает любые 6 различных монет. Разрешается переворачивать и те монеты, которые уже были задействованы в предыдущих ходах.

а) Может ли после нескольких ходов ровно 16 монет оказаться кверху решкой?

б) Может ли после нескольких ходов ровно 9 монет оказаться кверху решкой?

в) Какое наименьшее число монет может оказаться кверху орлом в результате конечного числа ходов?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …

Множество чисел назовём отличным, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество {300; 301; 302; ... 399} отличным?

б) Является ли м…

Множество чисел назовём красивым, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество {500; 501; 502; ... 599} красивым?

б) Является ли м…

Имеется уравнение $kx^2+mx+q =0 $, числа $k$, $m$, $q$ — целые, $k≠0$. а) Возможно ли, что уравнение имеет два различных корня, ровно один из которых является целым числом, если известно, чт…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!