Задание 19 из ЕГЭ по математике (профиль): задача 66

Разбор сложных заданий в тг-канале:

На столе перед нумизматом лежит 200 монет орлом кверху. За один ход нумизмат переворачивает любые 4 различные монеты. Разрешается переворачивать и те монеты, которые уже были задействованы в предыдущих ходах.

а) Может ли после нескольких ходов ровно 6 монет оказаться кверху решкой?

б) Может ли после нескольких ходов ровно 3 монеты оказаться кверху решкой?

в) Какое наибольшее число монет может оказаться кверху решкой, если хотя бы одна монета должна в результате быть кверху орлом?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Ксюша задумала трёхзначное натуральное число n. В результате деления этого числа на сумму его цифр получается натуральное число m. а) Может ли m=11? б) Какое наименьшее число n мог…

Кристина задумала трёхзначное натуральное число.

а) Может ли частное этого числа и суммы его цифр быть равным 3?

б) Может ли частное этого числа и суммы его цифр быть равным 28?

в)…

Последовательность натуральных чисел: 1,3,6,10,15, задана формулой an=12n(n+1). Можно ли среди а) её членов, меньших числа 100, выбрать семь чисел так, чтобы одно из …

Можно ли первые n натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) n=15; б) n=33;…