Задание 19 из ЕГЭ по математике (профиль): задача 64
На столе перед нумизматом лежит 2017 монет орлом кверху. За один ход нумизмат переворачивает любые 5 различных монет. Разрешается переворачивать в том числе и те монеты, которые уже были задействованы в предыдущих ходах.
а) Может ли после 5 ходов ровно 21 монета оказаться решкой кверху?
б) Может ли через 5 ходов ровно 20 монет оказаться решкой кверху?
в) За какое наименьшее число ходов можно сделать так, чтобы все монеты оказались решкой кверху?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Имеется $100$ куч одинаковых камней, во всех кучах различное натуральное число камней. Найдите наименьшее возможное число камней в самой большой куче в каждом из следующих случаев:
…Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.
а) Дана арифметическая прогрессия с целыми неотрицательными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a^2_{n+7} - a_n^2$. Сколько простых членов подряд может…