Задание 19 из ЕГЭ по математике (профиль): задача 64
На столе перед нумизматом лежит 2017 монет орлом кверху. За один ход нумизмат переворачивает любые 5 различных монет. Разрешается переворачивать в том числе и те монеты, которые уже были задействованы в предыдущих ходах.
а) Может ли после 5 ходов ровно 21 монета оказаться решкой кверху?
б) Может ли через 5 ходов ровно 20 монет оказаться решкой кверху?
в) За какое наименьшее число ходов можно сделать так, чтобы все монеты оказались решкой кверху?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.
Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 4 раза больше, либо в 4 раза меньше предыдущего. Сумма в…
Костя задумал трёхзначное натуральное число $A$ и посчитал число $m$ — отношение числа $A$ к сумме его цифр. а) Возможно ли, что $m=52$? б) Возможно ли, что $m=81$? в) Какое наибольшее целое…