Задание 19 из ЕГЭ по математике (профиль): задача 64
На столе перед нумизматом лежит 2017 монет орлом кверху. За один ход нумизмат переворачивает любые 5 различных монет. Разрешается переворачивать в том числе и те монеты, которые уже были задействованы в предыдущих ходах.
а) Может ли после 5 ходов ровно 21 монета оказаться решкой кверху?
б) Может ли через 5 ходов ровно 20 монет оказаться решкой кверху?
в) За какое наименьшее число ходов можно сделать так, чтобы все монеты оказались решкой кверху?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Тридцать шариков массой $1$ г, $2$ г, $…$, $30$ г разложили по двум коробкам, в каждой коробке хотя бы один шарик. Масса каждого шарика выражается целым числом граммов. Затем из второй кор…
На доске записаны числа 4, 5, 6, 7, 8, 9, 10, . . . 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 32 и отлична от каждой из сумм троек чисел, стёр…
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.