Задание 19 из ЕГЭ по математике (профиль): задача 14
Боря задумал трёхзначное натуральное число $n$. В результате деления этого числа на сумму его цифр получается натуральное число $m$. а) Может ли $m$ быть равно 10? б) Какое наибольшее число $n$ мог задумать Боря, если известно, что последняя цифра этого числа равна $8$? в) Чему равно наибольшее возможное значение $m$, если последняя цифра числа $n$ равна $4$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:
а) x + S(x) = 2017;
б) x + S(x) + S(S(x)) = 2017;
в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.
На столе перед нумизматом лежит 200 монет орлом кверху. За один ход нумизмат переворачивает любые 4 различные монеты. Разрешается переворачивать и те монеты, которые уже были задей…
Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …