Задание 19 из ЕГЭ по математике (профиль): задача 14

Разбор сложных заданий в тг-канале:

Боря задумал трёхзначное натуральное число $n$. В результате деления этого числа на сумму его цифр получается натуральное число $m$. а) Может ли $m$ быть равно 10? б) Какое наибольшее число $n$ мог задумать Боря, если известно, что последняя цифра этого числа равна $8$? в) Чему равно наибольшее возможное значение $m$, если последняя цифра числа $n$ равна $4$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, ко…

Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из …

Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …

На сайте провели опрос, кого из $180$ актёров кино посетители считают лучшим актёром года. На сайте отображается рейтинг каждого актёра — доля голосов, отданная за него, в процентах,…