Задание 19 из ЕГЭ по математике (профиль): задача 2

Разбор сложных заданий в тг-канале:

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=12$; б) $n=21$; в) $n=48$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд мож…

В офисе работает не менее $60$ и не более $80$ человек. К объявленному началу собрания пришло меньше половины сотрудников (а возможно, что и никто не пришёл). Спустя десять минут после…

На полигоне расположены $500$ узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно $2$ узла, между любыми двумя узлами проходит не более о…

Максим задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=1624$? б) Может ли $n⋅ s=1005$? в) Известно, что $n⋅ s<4738$. Найдите наибольшее возможное значение выражения $n⋅ s$.