Задание 19 из ЕГЭ по математике (профиль): задача 2

Разбор сложных заданий в тг-канале:

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=12$; б) $n=21$; в) $n=48$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дана последовательность квадратов натуральных чисел: $1$, $4$, $9$, $16$, $25$, $36, …$ . Можно ли среди: а) первых десяти её членов выбрать шесть чисел так, чтобы одно из них равнялось сумме …

Максим задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=1624$? б) Может ли $n⋅ s=1005$? в) Известно, что $n⋅ s<4738$. Найдите наибольшее возможное значение выражения $n⋅ s$.

В школе три одиннадцатых класса: «А», «Б» и «В». В октябре объявили сбор макулатуры, каждый ученик принёс целое число килограммов макулатуры. В классе «А» каждый ученик принёс мень…

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд мож…