Задание 14 из ЕГЭ по математике (профиль): задача 35
В правильной треугольной пирамиде $SABC$ сторона основания $AB=8$, а боковое ребро $SA=12$. На рёбрах $AB$ и $SC$ отмечены точки $K$ и $M$ соответственно, причём $AK:KB=SM:MC=1:4$, плоскость $α$ содержит прямую $KM$ и параллельна прямой $BC$. а) Докажите, что плоскость $α$ параллельна прямой $SA$. б) Найдите угол между плоскостями $α$ и $SBC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $6$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.
а) Докажите, что ребро $BC$ делится сек…
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
Внутри цилиндра расположен куб $ABCDA_1B_1C_1D_1$ так, что все его вершины лежат на поверхности цилиндра, причём вершины $B$ и $D_1$ совпадают с центрами оснований, а остальные вершины л…