Задание 14 из ЕГЭ по математике (профиль): задача 34

Разбор сложных заданий в тг-канале:

В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна $12$, а боковое ребро $SA$ равно $17$. На рёбрах $AB$ и $SB$ отмечены точки $K$ и $L$ соответственно, причём $AK=SL=7$. Плоскость $α$ перпендикулярна плоскости $ABC$ и содержит точки $K$ и $L$. а) Докажите, что плоскость $α$ содержит точку $C$. б) Найдите площадь сечения пирамиды $SABCD$ плоскостью $α$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Ребро куба $ABCDA_1B_1C_1D_1$ равно $10$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=3$. а) Докажите, что косинус угла ме…

Дана правильная призма $ABCDA_1B_1C_1D_1, M$ и $N$ - середины рёбер $AB$ и $BC$ соответственно, точка $K$ - середина $MN$.

а) Докажите, что прямые $KD_1$ и $MN$ перпендикулярны.

б) Найдите угол ме…

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ с рёбрами $AB=BC=6$, $ AA_1=12$, точки $M$ и $K$ — середины $AB$ и $BC$ соответственно, точка $N$ лежит на ребре $BB_1$, причём $BN=6$. Через точ…

Дана правильная призма $ABCDA_1B_1C_1D_1$, точка $M$ лежит на ребре $CD$, точка $N$ лежит на ребре $BC$, при этом $CM = 1/3CD, CN = 1/3BC$, точка $L$ - середина $MN$.

а) Докажите, что прямые $A_1L$ …

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!