Задание 13 из ЕГЭ по математике (профиль): задача 43

Разбор сложных заданий в тг-канале:

а) Решите уравнение $125^{x} - 3·25^{x} - 5^{x+2} + 75 = 0$.

б) Укажите все корни этого уравнения, принадлежащие отрезку $[log_{5} 4; log_{5} 11]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $2\log_2√ {25x^4+7}-\log_2(63x^2+1)=1$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

а) Решите уравнение $1 - 2 cos^2 x = sin(π - x)$.

б) Найдите корни уравнения, принадлежащие промежутку $[{9π}/{2};{13π}/{2})$.

а) Решите уравнение $3 - 2 cos^2 x + 3 sin(x - π) = 0$.

б) Найдите корни уравнения, принадлежащие промежутку $[{7π}/{2};{11π}/{2})$.

а) Решите уравнение ${sin x - 1}/{1 + cos2x}= {sin x - 1}/{1 + cos(π+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.