Задание 13 из ЕГЭ по математике (профиль): задача 43

Разбор сложных заданий в тг-канале:

а) Решите уравнение $125^{x} - 3·25^{x} - 5^{x+2} + 75 = 0$.

б) Укажите все корни этого уравнения, принадлежащие отрезку $[log_{5} 4; log_{5} 11]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $3⋅9^{x-{1} / {2}}-4⋅15^x+{3} / {25}⋅25^{x+1}=0$ б) Найдите корни данного уравнения, принадлежащие отрезку $[-1; 1]$.

а) Решите уравнение $3 - 2 cos^2 x + 3 sin(x - π) = 0$.

б) Найдите корни уравнения, принадлежащие промежутку $[{7π}/{2};{11π}/{2})$.

а) Решите уравнение $1 - 2 cos^2 x = sin(π - x)$.

б) Найдите корни уравнения, принадлежащие промежутку $[{9π}/{2};{13π}/{2})$.

а) Решите уравнение $2\sin x⋅\cos^2x-\sin2x+0{,}5\sin x=0$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ [-{π}/2; {π}] $.