Задание 15 из ЕГЭ по информатике: задача 17

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 59 сек.

Даны множества P = {4, 10, 15, 18, 56, 132}, Q = {4, 12, 15, 19, 56, 146} и A. Элементами множества являются натуральные числа. Известно, что выражение

¬(x ∈ P) → ((x ∈ Q) ∨ (x ∈ P)) → (x ∈ A)

истинно (т. е. принимает значение 1) при любом значении переменной x. Определите наименьшее возможное количество элементов множества A.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Для какого наименьшего целого неотрицательного числа A выражение

(3x + y < A) ⋁ (x > 15) ⋁ (y > 20)

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значения…

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 12) → ¬ДЕЛ(x, …

2023

Для какого наименьшего целого неотрицательного числа А логическое выражение

(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)

тождественно истинно (т.е. принимает значение 1) при любых целых неотрицатель…

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 9) → ¬ДЕЛ(x, 4…