Кодирование и передача файлов

Теория к заданию 7 из ЕГЭ по информатике

Разбор сложных заданий в тг-канале:

Информация и ее кодирование

Различные подходы к определению понятия «информация». Виды информационных процессов. Информационный аспект в деятельности человека

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

  • информация — это новые факты, новые знания;
  • информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
  • информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

  • полезность;
  • доступность (понятность);
  • актуальность;
  • полнота;
  • достоверность;
  • адекватность.

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Язык как способ представления и передачи информации

Для того чтобы сохранить информацию и передать ее, с давних времен использовались знаки.

В зависимости от способа восприятия знаки делятся на:

  • зрительные (буквы и цифры, математические знаки, музыкальные ноты, дорожные знаки и др.);
  • слуховые (устная речь, звонки, сирены, гудки и др.);
  • осязательные (азбука Брайля для слепых, жесты-касания и др.);
  • обонятельные;
  • вкусовые.

Для долговременного хранения знаки записывают на носители информации.

Для передачи информации используются знаки в виде сигналов (световые сигналы светофора, звуковой сигнал школьного звонка и т. д.).

По способу связи между формой и значением знаки делятся на:

  • иконические — их форма похожа на отображаемый объект (например, значок папки «Мой компьютер» на «Рабочем столе» компьютера);
  • символы — связь между их формой и значением устанавливается по общепринятому соглашению (например, буквы, математические символы ∫, ≤, ⊆, ∞; символы химических элементов).

Для представления информации используются знаковые системы, которые называются языками. Основу любого языка составляет алфавит — набор символов, из которых формируется сообщение, и набор правил выполнения операций над символами.

Языки делятся на:

  • естественные (разговорные) — русский, английский, немецкий и др.;
  • формальные — встречающиеся в специальных областях человеческой деятельности (например, язык алгебры, языки программирования, электрических схем и др.)

Системы счисления также можно рассматривать как формальные языки. Так, десятичная система счисления — это язык, алфавит которого состоит из десяти цифр 0..9, двоичная система счисления — язык, алфавит которого состоит из двух цифр — 0 и 1.

Методы измерения количества информации: вероятностный и алфавитный

Единицей измерения количества информации является бит. 1 бит — это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Связь между количеством возможных событий N и количеством информации I определяется формулой Хартли:

N = 2I.

Например, пусть шарик находится в одной из четырех коробок. Таким образом, имеется четыре равновероятных события (N = 4). Тогда по формуле Хартли 4 = 2I. Отсюда I = 2. То есть сообщение о том, в какой именно коробке находится шарик, содержит 2 бита информации.

Алфавитный подход

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка (алфавит) можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет каждый символ:

I = log2 N.

Например, в русском языке 32 буквы (буква ё обычно не используется), т. е. количество событий будет равно 32. Тогда информационный объем одного символа будет равен:

I = log2 32 = 5 битов.

Если N не является целой степенью 2, то число log2N не является целым числом, и для I надо выполнять округление в большую сторону. При решении задач в таком случае I можно найти как log2N', где N′ — ближайшая к N степень двойки — такая, что N′ > N.

Например, в английском языке 26 букв. Информационный объем одного символа можно найти так:

N = 26; N' = 32; I = log2N' = log2(25) = 5 битов.

Если количество символов алфавита равно N, а количество символов в записи сообщения равно М, то информационный объем данного сообщения вычисляется по формуле:

I = M · log2N.

Примеры решения задач

Пример 1. Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

Решение. С помощью n лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2n сигналов. 25 < 50 < 26, поэтому пяти лампочек недостаточно, а шести хватит.

Ответ: 6.

Пример 2. Метеорологическая станция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

Решение. В данном случае алфавитом является множество целых чисел от 0 до 100. Всего таких значений 101. Поэтому информационный объем результатов одного измерения I = log2101. Это значение не будет целочисленным. Заменим число 101 ближайшей к нему степенью двойки, большей 101. Это число 128 = 27. Принимаем для одного измерения I = log2128 = 7 битов. Для 80 измерений общий информационный объем равен:

80 · 7 = 560 битов = 70 байтов.

Ответ: 70 байтов.

Вероятностный подход

Вероятностный подход к измерению количества информации применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

$I=-∑↙{i=1}↖{N}p_ilog_2p_i$,

где $I$ — количество информации;

$N$ — количество возможных событий;

$p_i$ — вероятность $i$-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

$p_1={1}/{2}, p_2={1}/{4}, p_3={1}/{8}, p_4={1}/{8}$.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

$I=-({1}/{2}·log_2{1}/{2}+{1}/{4}·log_2{1}/{4}+{1}/{8}·log_2{1}/{8}+{1}/{8}·log_2{1}/{8})={14}/{8}$ битов $= 1.75 $бита.

Единицы измерения количества информации

Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).

Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий. Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

В информатике принято рассматривать последовательности длиной 8 битов. Такая последовательность называется байтом.

Производные единицы измерения количества информации:

1 байт = 8 битов

1 килобайт (Кб) = 1024 байта = 210 байтов

1 мегабайт (Мб) = 1024 килобайта = 220 байтов

1 гигабайт (Гб) = 1024 мегабайта = 230 байтов

1 терабайт (Тб) = 1024 гигабайта = 240 байтов

Процесс передачи информации. Виды и свойства источников и приемников информации. Сигнал, кодирование и декодирование, причины искажения информации при передаче

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними.

В качестве источника информации может выступать живое существо или техническое устройство. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Сигнал — это материально-энергетическая форма представления информации. Другими словами, сигнал — это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение. Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными).

Сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Примеры решения задач

Пример 1. Для кодирования букв А, З, Р, О используются двухразрядные двоичные числа 00, 01, 10, 11 соответственно. Этим способом закодировали слово РОЗА и результат записали шестнадцатеричным кодом. Указать полученное число.

Решение. Запишем последовательность кодов для каждого символа слова РОЗА: 10 11 01 00. Если рассматривать полученную последовательность как двоичное число, то в шестнадцатеричном коде оно будет равно: 1011 01002 = В416.

Ответ: В416.

Скорость передачи информации и пропускная способность канала связи

Прием/передача информации может происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации, или скорость информационного потока.

Скорость выражается в битах в секунду (бит/с) и кратных им Кбит/с и Мбит/с, а также в байтах в секунду (байт/с) и кратных им Кбайт/с и Мбайт/с.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Примеры решения задач

Пример 1. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Передача файла через данное соединение заняла 3 мин. Определите размер файла в килобайтах.

Решение. Размер файла можно вычислить, если умножить скорость передачи информации на время передачи. Выразим время в секундах: 3 мин = 3 ⋅ 60 = 180 с. Выразим скорость в килобайтах в секунду: 256000 бит/с = 256000 : 8 : 1024 Кбайт/с. При вычислении размера файла для упрощения расчетов выделим степени двойки:

Размер файла = (256000 : 8 : 1024) ⋅ (3 ⋅ 60) = (28 ⋅ 103 : 23 : 210) ⋅ (3 ⋅ 15 ⋅ 22) = (28 ⋅ 125 ⋅ 23 : 23 : 210) ⋅ (3 ⋅ 15 ⋅ 22) = 125 ⋅ 45 = 5625 Кбайт.

Ответ: 5625 Кбайт.

Технология обработки графической и звуковой информации

Растровая графика. Растровые графические объекты и операции над ними

Растровые графические изображения формируются в процессе сканирования рисунков и фотографий, а также при использовании цифровых фото- и видеокамер. С помощью графического редактора можно создать растровое графическое изображение непосредственно на компьютере.

Растровое графическое изображение состоит из отдельных точек — пикселей, образующих строки и столбцы. Основные свойства пикселя — расположение и цвет. Значения свойств кодируются двоичным кодом и сохраняются в видеопамяти компьютера.

Качество изображения на экране монитора зависит от пространственного разрешения и глубины цвета.

Пространственное разрешение определяется как произведение количества строк изображения на количество точек в строке. Глубина цвета измеряется в битах на точку и определяет количество цветов, в которые могут быть окрашены точки изображения. Чем больше пространственное разрешение и глубина цвета, тем выше качество изображения и тем больше объем его файла. В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима.

Растровые изображения чувствительны к масштабированию. При уменьшении изображения несколько соседних точек преобразуются в одну, поэтому теряется четкость мелких деталей изображения. При его увеличении увеличивается размер каждой точки и появляется ступенчатый эффект (пикселизация изображения).

Для графических изображений могут использоваться различные палитры (наборы) цветов. Количество цветов N в палитре и количество информации I, необходимое для кодирования цвета каждой точки, связаны соотношением N = 2I.

Например, для черно-белого изображения палитра состоит из двух цветов. Тогда с помощью этой формулы можно вычислить, какое количество информации необходимо, чтобы закодировать цвет каждой точки: 2 = 2I ⇒ 21 = 2I ⇒ I = 1 бит.

Информационный объем IП требуемой видеопамяти рассчитывается по формуле Iп = I · X · Y,

где I — глубина цвета в битах на точку,

Х — количество точек изображения по горизонтали,

Y — количество точек изображения по вертикали.

Цветовые модели

Для кодирования цветов изображения в компьютере используются цветовые модели. Цветовая модель (система цветопередачи) — это способ представления различных цветов спектра в виде набора числовых характеристик определенных базовых компонентов.

Цветовая модель RGB. С экрана монитора человеческий глаз воспринимает цвет как сумму излучения трех базовых цветов: красного (Red), зеленого (Green) и синего (Blue). Эти цвета называются основными. Цвета палитры RGB формируются путем сложения базовых цветов, имеющих различную интенсивность. Цвет Color в палитре можно определить с помощью формулы Color = R + G + B.

Если все базовые цвета имеют максимальную интенсивность, получается белый цвет, если минимальную — черный. Серый цвет — промежуточный между черным и белым. В нем есть все цветовые составляющие, но они одинаковы и нейтрализуют друг друга. Красный цвет получается при максимальной интенсивности красного и минимальной интенсивности зеленого и синего цветов. Аналогично, зеленый и синий цвета получаются при максимальной интенсивности соответствующего базового цвета и минимальной интенсивности остальных цветов. При глубине цвета в 24 бита (трехбайтная кодировка) значение интенсивности каждого базового компонента задается целым десятичным числом от 0 до 255 или двоичным числом от 00000000 до 11111111. В этом случае красный цвет, например, будет закодирован последовательностью 255 0 0 (или 11111111 00000000 00000000); белый — 255 255 255 (11111111 11111111 11111111); желтый — 255 255 0 (или 11111111 11111111 00000000); голубой — 0 255 255 (или 00000000 11111111 11111111); черный — 0 0 0 (или 00000000 00000000 00000000). Последовательности 127 0 0 и 235 0 0 будут означать оттенки красного цвета, но в первом случае цвет будет более темный. Данная цветовая модель используется для компьютерных изображений, предназначенных для просмотра на экране монитора или телевизора.

Цветовая модель CMYK. Палитра цветов формируется путем наложения базовых цветов: голубого (Cyan), пурпурного (Magenta), желтого (Yellow) и черного (Black). Доля каждого базового компонента задается в процентах (целым числом от 0 до 100). Цвет Color в палитре можно определить с помощью формулы Color = C + M + Y.

Голубой, пурпурный и желтый цвета называются дополнительными, т. к. они дополняют основные цвета до белого: голубой дополняет красный, пурпурный — зеленый, а желтый — синий.

Данная палитра используется при печати изображений на принтере и основана на восприятии отражаемого света. Изображение на бумаге человек воспринимает в отраженном свете. Если на бумагу краски не нанесены, то падающий белый свет полностью отражается, и мы видим белый лист бумаги (White = (C = 0, M = 0, Y = 0)). Если краски нанесены, то они поглощают определенные цвета. Цвета в палитре формируются путем вычитания из белого цвета определенных цветов. Например, нанесенная на бумагу голубая краска поглощает красный свет и отражает зеленый и синий (Cyan = W – R = G + B); желтая краска поглощает синий свет и отражает красный и зеленый (Yellow = W – B = G + R).

Цветовая модель HSB. Палитра цветов формируется путем установки значений трех базовых компонентов: оттенка (Hue), насыщенности (Saturation) и яркости (Brightness). Оттенок Н определяет цвет в спектре и задается целым числом от 0 до 360 (0 — красный цвет, 360 — фиолетовый). Насыщенность S характеризует долю белого цвета, добавленного к выбранному оттенку, и задается в процентах от 0 до 100. При минимальной насыщенности какой-либо оттенок цвета становится серым. Яркость В определяется примесью черного цвета к выбранному оттенку и задается в процентах от 0 до 100. Любой оттенок при минимальной яркости становится черным. Эту модель используют художники при создании компьютерных изображений, моделируя нужный цвет на «виртуальном мольберте» графического редактора.

Форматы растровых графических файлов

При сохранении графического изображения на внешнем носителе могут использоваться различные способы упорядочивания данных в файле, каждый из которых определяет формат (тип) графического файла.

За счет большого количества пикселей в изображении и соответственно большого количества данных, которые надо сохранять, размеры файлов растровых изображений достаточно велики. Поэтому для растровых графических файлов применяется сжатие. Алгоритм сжатия включается непосредственно в формат графического файла.

BMP (Bit MaP image) — универсальный формат растровых графических файлов. Изображение в этом формате сохраняется попиксельно, без сжатия. Стандартное расширение имени файла — bmp. Этот формат поддерживается многими графическими редакторами и рекомендуется для хранения и обмена данными с другими приложениями.

JPEG (Joint Photographic Expert Group) — использует эффективные алгоритмы сжатия данных, которые значительно уменьшают размеры файлов. Но это достигается за счет необратимой потери части данных и ухудшения качества изображения. Стандартные расширения имени файла — jpg или jpeg. Данный формат целесообразно использовать для хранения многоцветных изображений с плавными переходами между цветами, где потеря качества малозаметна. Формат поддерживается приложениями для различных операционных систем и часто используется для размещения графических изображений на Web-страницах в Интернете.

GIF (Graphics Interchange Format) — самый «плотный» из графических форматов, не имеющих потери информации. Файлы этого формата имеют расширение gif. В этом формате хранятся и передаются малоцветные (до 256 цветов) изображения, например рисованные иллюстрации. У этого формата есть интересные особенности, позволяющие создавать необычные эффекты: прозрачность фона и анимацию изображения.

TIFF (Tagged Image File Format) — формат, поддерживаемый всеми основными графическими редакторами, включает в себя алгоритм сжатия без потерь информации. Файлы этого формата имеют расширение tif. Они сохраняют изображения с высоким качеством, поэтому широко используются в полиграфии. Формат обеспечивает не очень большую степень сжатия, но дает возможность сохранять в одном файле дополнительную информацию в невидимых вспомогательных слоях — каналах (например, наложение аннотаций и примечаний на рисунок).

PNG (Portable Network Graphic) — формат, аналогичный формату GIF, но позволяет использовать значительно больше цветов в изображении. Стандартное расширение имени файла — png.

Существуют и другие форматы растровых файлов, такие как PCX, IFF, LBM, IMG, MAC, MSP, PGL.

Среди всего разнообразия форматов нет идеального, удовлетворяющего всем требованиям пользователя. Поэтому графические редакторы предоставляют пользователю возможность самостоятельно выбирать формат графического файла в зависимости от целей работы с ним и последующего использования.

Графические редакторы

Для создания, редактирования и просмотра графических изображений используются специальные программы — графические редакторы.

С помощью растровых графических редакторов можно обрабатывать цифровые фотографии и отсканированные изображения, повышая при этом их качество путем изменения яркости, контрастности, цветовой палитры, а также удаления дефектов изображения. Кроме того, растровые графические редакторы позволяют создавать новые изображения и применять к ним различные эффекты преобразования. Необходимо помнить, что после окончания рисования нарисованный объект перестает существовать как самостоятельный элемент и становится лишь группой пикселей на рисунке.

Существуют простые растровые графические редакторы, например Paint — стандартное приложение операционной системы Windows, и мощные графические системы, например Adobe Photoshop. Основные возможности растровых графических редакторов:

  • cоздание изображения:

— определение области рисования (размер, поля, ориентация холста);

— рисование стандартных графических примитивов (линии, прямоугольники, многоугольники, овалы);

— рисование традиционными методами с помощью инструментов рисования, таких как карандаш, кисть, распылитель, заливка, ластик;

— добавление текста и его форматирование;

— управление цветом: выбор цвета из стандартной и расширенной палитры, копирование цвета, определение цвета пикселя;

  • редактирование изображения:

— выделение области изображения для обработки специальными инструментами;

— копирование, перемещение, удаление выделенных областей изображения;

— геометрическое преобразование выделенных областей изображения: изменение размера, поворот, наклон, отражение.

Примеры решения задач

Пример 1. В процессе преобразования растрового графического изображения количество цветов уменьшилось с 65536 до 16. Как уменьшился его информационный объем?

Решение.

2I1 = 65536; 2I1 = 216 ⇒ I1 = 16 .

2I2 = 16; 2I2 = 24 ⇒ I2 = 4.

${I1}/{I2}= {16}/{4} = 4$.

Ответ: информационный объем уменьшился в 4 раза.

Пример 2. Черно-белое растровое графическое изображение имеет размер 10 $×$ 10 точек. Какой информационный объем имеет изображение?

Решение. В палитре 2 цвета, следовательно, глубина цвета I = 1 бит (2 = 2I ; 21 = 2I ⇒ I = 1).

Информационный объем IП найдем по формуле: IП = I · X · Y = 1 · 10 · 10 = 100 битов.

Ответ: 100 битов.

Пример 3. Растровое графическое изображение с палитрой из 256 цветов имеет размер 10 $×$ 10 точек. Какой информационный объем имеет изображение?

Решение. Найдем глубину цвета: 256 = 2I; 28 = 2I ⇒ I = 8 . Информационный объем IП найдем по формуле: IП = I ∙ X ∙ Y = 8 ∙ 10 ∙ 10 = 800 битов = 800 : 8 = 100 байтов.

Ответ: 100 байт.

Пример 4. Для хранения растрового изображения размером 64 $×$ 64 пикселя отвели 1,5 килобайта памяти. Каково максимально возможное число цветов в палитре изображения?

Решение. По условию IП =1,5 Кбайт или 1,5 · 210 байт = 1,5 · 210 · 8 бит.

X · Y = 64 · 64 = 26 · 26 = 212. Из формулы IП = I · X · Y найдем глубину цвета I:

$I={I_П}/{X·Y}={1.5·2^{10}·8}/{2^{12}}=1.5·2^1=3$.

Из формулы N = 2I найдем число цветов N: N = 23 = 8 цветов.

Ответ: максимально возможное количество цветов в палитре — 8.

Пример 5. Каков минимальный объем памяти, достаточный для хранения любого растрового изображения размером 256 × 256 пикселей, если в изображении используется палитра из 216 цветов? (Саму палитру хранить не нужно).

Решение. Из формулы N = 2I найдем глубину цвета I: 216 = 2I; I = 16. Тогда объем памяти IП = I · X · Y = 16 · 256 · 256 = 24 · 28 · 28 = 220 бита = 220 : 8 = 217 байта = 27 Кбайтт.

Ответ: 27 Кбайт = 128 Кбайт.

Пример 6. Для кодирования цвета фона страницы Интернет используется атрибут bgcolor = " = "# XXXXXX " , где в кавычках задаются шестнадцатеричные значения интенсивности цветовых компонент в 24-битной RGB-модели. Какой цвет будет у страницы, заданной командой языка HTML < body bgcolor = "# FFFFFF " > ?

Решение. В 24-битной RGB-модели каждая цветовая составляющая (красная, зеленая, синяя) может принимать значение от 0 до 255 и кодируется одним байтом (двумя шестнадцатеричными цифрами). FF16 = 25510. Т. е. FF FF FF = 255 255 255 . Это означает, что все цветовые составляющие имеют максимальную интенсивность. В RGB-модели это соответствует белому цвету.

Ответ: белый цвет.

Векторная графика. Векторные графические объекты и операции над ними

В векторной графике основным элементом изображения является линия. В растровой графике тоже существует линия, но там она рассматривается как комбинация точек. Для каждой точки отводится одна или несколько ячеек памяти. Следовательно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку линия представляется в виде нескольких параметров. Что бы мы ни делали с этой линией, меняются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек остается неизменным для любой линии.

Линия — это элементарный объект векторной графики. Простейшие объекты объединяются в более сложные. Например, объект четырехугольник можно рассматривать как четыре связанные линии, а объект куб — либо как 12 связанных линий, либо как 6 связанных четырехугольников. Из-за такого подхода векторную графику часто называют объектно-ориентированной графикой.

Как и все объекты, линии имеют свойства: форма линии, ее толщина, цвет, характер линии (сплошная, пунктирная и т. п.). Замкнутые линии имеют свойство заполнения. Внутренняя область замкнутого контура может быть заполнена цветом, текстурой, картой. Незамкнутая линия имеет вершины, которые называются узлами. Узлы тоже имеют свойства, от которых зависит, как выглядит вершина линии и как две линии сопрягаются между собой.

Хотя объекты векторной графики хранятся в памяти в виде набора параметров, на экран все изображения все равно выводятся в виде точек. Перед выводом на экран каждого объекта программа производит вычисления координат экранных точек в изображении объекта. Аналогичные вычисления производятся и при выводе объектов на принтер.

Достоинства векторной графики:

  • Небольшой информационный объем файлов. Достаточно сложные композиции, насчитывающие тысячи объектов, расходуют лишь десятки и сотни килобайтов.
  • Легко решаются вопросы масштабирования. Если линии задана толщина, равная 0,15 мм, то, сколько бы мы ни увеличивали или ни уменьшали рисунок, эта линия все равно будет иметь только такую толщину, поскольку это одно из свойств объекта, жестко за ним закрепленное. Распечатав чертеж на большом или на малом листе бумаги, мы всегда получим линии одной и той же толщины. Это свойство векторной графики широко используется в картографии, в конструкторских системах автоматизированного проектирования (САПР) и в автоматизированных системах архитектурного проектирования. При увеличении рисунка можно более подробно рассмотреть сложный объект.

Программы, предназначенные для работы с векторными изображениями, называют векторными графическими редакторами. Их применяют в тех случаях, когда основным требованием к изображению является высокая точность формы. Такая задача возникает при разработке логотипов компаний, при художественном оформлении текста (например, журнальных заголовков или рекламных объявлений), а также во всех случаях, когда иллюстрация является чертежом, схемой или диаграммой, а не рисунком. Векторная графика также лежит в основе flash-анимации. Примеры редакторов: Adobe Illustrator, Macromedia Freehand, CorelDraw.

Основные возможности векторных графических редакторов:

1) создание изображения:

  • определение области рисования (размер, поля, ориентация холста);
  • рисование стандартных графических примитивов (линий, прямоугольников, многоугольников, овалов);
  • добавление текстовых областей и выносок;
  • изменение видимости объектов путем изменения порядка размещения их слоев (каждый графический объект рисуется в своем слое, а весь рисунок состоит из множества слоев);
  • градиентная заливка объектов;
  • задание степени прозрачности объекта;

2) редактирование изображения:

  • выделение отдельного объекта в рисунке или группы объектов;
  • группировка нескольких объектов в один новый объект;
  • выравнивание объектов с помощью сетки, которую можно настраивать;
  • копирование, перемещение, удаление выделенных объектов;
  • геометрическое преобразование выделенных объектов: изменение размера, поворот, наклон, отражение.

Форматы векторных графических файлов

Разнообразие форматов векторной графики значительно меньше, чем растровой графики, и практически каждый векторный редактор использует свой собственный формат сохранения данных.

WMF (Windows MetaFile) — универсальный формат векторных графических файлов для приложений Windows. Используется для хранения коллекции графических изображений Microsoft Clip Gallery. Возможные расширения файлов WMF, EMF, WMZ, EMZ:

CGM (Computer Graphic Metafile) — широко используется как стандартный формат векторных графических данных в сети Интернет.

EPS (Encapsulated PostScript) — формат, поддерживаемый программами для различных операционных систем. Рекомендуется для создания иллюстраций в настольных издательских системах.

CDR (CorelDRaw files) — оригинальный формат файлов векторного графического редактора CorelDraw. Изображение в файле может состоять из нескольких страниц. Формат позволяет сохранять не только векторную графику, но и текст и растровые изображения. Максимальный размер рисунка 45 × 45 м. Возможные расширения файлов CDR или CDТ.

AI (Adobe Illustrator files) — оригинальный формат файлов векторного графического редактора Adobe Illustrator. Сохраняет в файле только одну страницу, максимальный размер рисунка 3 × 3 м.

SVG (Scalable Vector Graphics) — универсальный формат двумерной графики. Позволяет сохранять в файле текст, графические изображения и анимацию. Файлы могут дополнительно сжиматься программами-архиваторами. Формат обрабатывается практически всеми векторными графическими редакторами. Широкое применение получил в инженерной графике и при разработке Web-сайтов.

Практика: решай 7 задание и тренировочные варианты ЕГЭ по информатике

Составим твой персональный план подготовки к ЕГЭ

Хочу!