Задание 17 из ЕГЭ по математике (профиль): задача 61
К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую BC в точке P. В каком отношении прямая, проходящая через точку P и центр окружности, делит сторону AB (считая от точки A), если AN : ND = 1 : 4?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность касается продолжений сторон AB и BC треугольника ABC соответственно в точках D и E. Точки A, D, E и C лежат на одной окружности, причём точка A лежит между точками B и D…
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
Трапеция $ABCD$ с б\'ольшим основанием $AD$ вписана в окружность. $BH$ — высота трапеции. Прямая $BH$ вторично пересекает окружность в точке $T$. а) Докажите, что прямая $AT$ и диагональ трапе…