Задание 17 из ЕГЭ по математике (профиль): задача 61

Разбор сложных заданий в тг-канале:

К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.

а) Докажите, что периметр треугольника AMN равен стороне квадрата.

б) Прямая MN пересекает прямую BC в точке P. В каком отношении прямая, проходящая через точку P и центр окружности, делит сторону AB (считая от точки A), если AN : ND = 1 : 4?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…

Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $M$ и $N$.

а) Докажите, что центр окружности, вписанной в треугольник $BMN$, лежит на окружности, …

В треугольнике $ABC$ $AB=7$, $∠ ACB=\arcsin{7} / {12}$. Хорда $DG$ окружности, описанной около треугольника $ABC$, пересекает стороны $AC$ и $BC$ треугольника в точках $F$ и $E$ соответственно. Изве…

Иван и Трофим открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $10%$, а в конце четвёртого года…