Задание 17 из ЕГЭ по математике (профиль): задача 61
К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую BC в точке P. В каком отношении прямая, проходящая через точку P и центр окружности, делит сторону AB (считая от точки A), если AN : ND = 1 : 4?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Полина хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на $14$ лет под $8%$ годовых, второй — на $5$ лет под $10%$ годовых, причём в обо…
В остроугольном треугольнике $АВС$ проведены высота $BB_1$ и биссектриса $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. …
Вне квадрата $ABCD$ с центром $O$ взята точка $K$, причём
$∠ BKC=90^°$. а) Докажите, что $∠ BOK=∠ BCK$. б) Прямая $KO$ пересекает сторону $AD$ квадрата в точке $L$. Найдите $KL$, если известно, что…