Задание 17 из ЕГЭ по математике (профиль): задача 15
Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $M$. Продолжение отрезка $FB$ пересекает окружность с диаметром $AB$ в точке $D$. а) Докажите, что прямые $AD$ и $FC$ параллельны. б) Найдите площадь треугольника $ABF$, если $AM=12$ и $FM=24$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В остроугольном треугольнике $ABC$ проведены высота $BB_1$ и медиана $AA_1$, причём точки $A$, $B$, $B_1$ и $A_1$ лежат на одной окружности. а) Докажите, что треугольник $ABC$ равнобедренный. б) Н…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Две окружности различных радиусов касаются друг друга внешним образом. Их общие касательные, не проходящие через точку касания окружностей, пересекаются в точке O. При этом одна из…