Задание 17 из ЕГЭ по математике (профиль): задача 14
В прямоугольном треугольнике $ABC$ точка $D$ лежит на катете $AC$, а точка $F$ — на продолжении катета $BC$ за точку $C$, причём $CD=BC$ и $CF=AC$. Отрезки $CM$ и $CN$ — высоты треугольников $ABC$ и $FCD$ соответственно. а) Докажите, что $CM$ и $CN$ перпендикулярны. б) Прямые $AF$ и $BD$ пересекаются в точке $K$. Найдите $DK$, если $BC=3$, $AC=9$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиусом 2, касающиеся её сторон и друг…
В треугольнике $ABC$ проведены медианы $BB_1$ и $CC_1$. На сторонах $BC, AC$ и $AB$ взяты соответственно точки $M, N$ и $P$, причём $MN ‖ BB_1, MP ‖ CC_1$ и $BM : BC = 1 : 5$.
а) Докажите, что $BP = {1}/{10}AB, CN = {2}/{5}AC$.…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…