Все для самостоятельной подготовки к ЕГЭ
Зарегистрироваться

Найдите значения $a$, при которых уравнение $x^{4}(x^{2}+√ {a^{2}-a-1})+√ {(8-a)^{2}}+√ {(27+a)^{2}}-√ {(8-a)(27+a)}=21$ …

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 59 сек.

Найдите значения $a$, при которых уравнение
$x^{4}(x^{2}+√ {a^{2}-a-1})+√ {(8-a)^{2}}+√ {(27+a)^{2}}-√ {(8-a)(27+a)}=21$ имеет единственное решение.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения параметра $a$, при каждом из которых система уравнений $\{{\table {(x-ay-5a)(x-4y-5a)=0{,}}; {x^2+y^2=4};}$ имеет ровно четыре различных решения.

При каких значениях параметра $a$ система

$\{\table\x^2+y^2+9=a^2+4x; \ {||x-3|-|x-6||}=y;$

имеет не менее трёх решений.

При каких значениях параметра $a$ система

$\{\table\x^2+y^2+84=a^2+18x; \ {||x-8|-|x-6||}=y;$

имеет не менее трёх решений.

Найдите все значения параметра $a$, при каждом из которых уравнение
${2a^2+3ax+(4-3x)\log_2 x-2a(\log_2 x+2)} / {x^2-3x} =0$ имеет хотя бы один корень на промежутке $[0{,}5;4]$.