Задание 17 из ЕГЭ по математике (профиль): задача 72
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $AB$ и $AC$ в точках $M$ и $N$.
а) Докажите что центр окружности, вписанной в треугольник $AMN$, лежит на окружности, вписанной в треугольник $ABC$.
б) Найдите расстояние между центрами этих окружностей, если $AB = CN = 10, BM = 6, sinA = {4√3}/{7}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …
Точка $B$ лежит на отрезке $AC$. Прямая, проходящая через точку $A$, касается окружности с диаметром $BC$ в точке $F$ и второй раз пересекает окружность с диаметром $AB$ в точке $M$. Продолжение…
В прямоугольнике $ABCD$ со сторонами $6$ и $9$ проведены биссектрисы всех углов до взаимного пересечения. а) Докажите, что полученный четырёхугольник — квадрат. б) Найдите площадь этого …