Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ …
Окружность, вписанная в остроугольный треугольник $ABC$, касается сторон $BA$ и $BC$ в точках $E$ и $F$.
а) Докажите что центр окружности, вписанной в треугольник $BEF$, лежит на окружности, вписанной в треугольник $ABC$.
б) Найдите расстояние между центрами этих окружностей, если $AB = BC, BE = 13, EF = 10, S_{BEF} : S_{ABC} = 4 : 9$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $P$ - центр окружности, описанной около остроугольного треугольника $MNQ, K$ - центр вписанной в него окружности, $O$ - точка пересечения высот. Известно, что $∠NMQ = ∠PNQ + ∠PQN$.
а…
«Банк рядом» предоставляет кредит сроком 3 года на следующих условиях: проценты начисляются в конце каждого полугодия из расчёта: I год — по $10%$ за полугодие, II год — по $20%$ за по…
Мария и Анна открыли вклады одинакового размера в одном из банков на четыре года. Ежегодно в течение первых трёх лет банк увеличивал каждый вклад на $12%$, а в конце четвёртого года …