Задание 14 из ЕГЭ по математике (профиль): задача 61
В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AA_1$ взята точка $M$ так, что $AM : MA_1 = 2 : 3$.
а) Постройте сечение призмы плоскостью, проходящей через точки $D$ и $M$ параллельно диагонали основания $AC$.
б) Найдите угол между плоскостью сечения и плоскостью основания, если $AA_1 = 5√6, AB = 4$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точки $M$ и $N$ — середины рёбер $AD$ и $CC_1$ куба $ABCDA_1B_1C_1D_1$ соответственно. Ребро куба равно $4$. a) Докажите, что прямые $B_1M$ и $BN$ перпендикулярны. б) Найдите расстояние между прям…
В основании пирамиды $ABCD$ лежит правильный треугольник $ABC$. Все боковые рёбра наклонены к основанию под одним и тем же углом.
а) Докажите, что $AB ⊥ CD$.
б) Найдите расстояние между …
Ребро куба $ABCDA_1B_1C_1D_1$ равно $8$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=2$. а) Докажите, что косинус угла меж…