Задание 14 из ЕГЭ по математике (профиль): задача 62

Разбор сложных заданий в тг-канале:

В основании пирамиды ABCD лежит правильный треугольник ABC. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что прямаяAB перпендикулярна плоскости, проходящей через середину ребра AB и ребро DC.

б) Найдите расстояние между прямыми AB и CD, если AB = $6√3$, AD = $5√3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В правильном тетраэдре DABC с ребром 5 на рёбрах AD, BD и AC выбраны точки K, L и M соответственно так, что KD = MC = 2, LD = 4.

а) Постройте сечение тетраэдра плоскостью KLM.

б) Н…

Дана правильная треугольная пирамида $SABC$, $AB=18$. Высота $SO$, проведённая к основанию, равна 10, точка $M$ — середина $AS$, точка $K$ — середина $BC$. Плоскость, проходящая через точку $M$ и …

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.

а) Докажите, что ребро $BC$ делится се…

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.

а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!