В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 12, а высот…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 12, а высота $SO$ равна 9. Точка $K$ делит боковое ребро $SC$ в отношении $3:2$, считая от вершины $S$. Плоскость $ABK$ пересекает боковое ребро $SD$ в точке $L$. а) Докажите, что площадь четырёхугольника $CKLD$ составляет ${16} / {25}$ площади треугольника $SCD$. б) Найдите объём пирамиды $ACKLD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.
а) Д…
Ребро куба $ABCDA_1B_1C_1D_1$ равно $10$. На рёбрах $BC$ и $A_1D_1$ взяты соответственно точки $K$ и $L$, а на ребре $CD$ — точки $M$ и $N$ так, что $BK=D_1L=CM=DN=3$. а) Докажите, что косинус угла ме…
В правильной четырёхугольной пирамиде $SABCD$ сторона основания равна 18, а высота $SO$ равна 40. Точка $L$ — середина бокового ребра $SC$, точка $M$ — середина ребра $CD$. Плоскость $ABL$ перес…