Задание 15 из ЕГЭ по информатике: задача 33

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 41 сек.

Для скольких целых чисел A выражение

((x · x ≤ A) ⋁ (x > 9)) ⋀ ((y · y ≤ A) → (y ≤ 9))

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях переменных x и y)?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Даны множества P = {3, 6, 12, 22, 54, 103}, Q = {3, 8, 12, 24, 54, 107, 211} и A. Элементами множества являются натуральные числа. Известно, что выражение

(¬(x ∈ A) ∨ ¬((x ∈ Q) ∧ (…

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 7) → ¬ДЕЛ(x, 1…

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 12) → ¬ДЕЛ(x, …

Для какого наибольшего целого числа A выражение

((x · x ≤ A) ⋁ (x > 5)) ⋀ ((y · y ≤ A) → (y ≤ 5))

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных…