Задание 15 из ЕГЭ по информатике: задача 7

Разбор сложных заданий в тг-канале:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Найдите наибольшее натуральное число A, для которого формула

¬(ДЕЛ(120, A) → ¬ДЕЛ(168, A))

истинна.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Для какого наименьшего целого неотрицательного числа А логическое выражение

(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)

тождественно истинно (т.е. принимает значение 1) при любых целых неотрицательных …

Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A > 1 формула

¬ДЕЛ(x, A) → (ДЕ…

На числовой прямой даны два отрезка: P = [24, 35] и Q = [30, 68]. Укажите наименьшую возможную длину такого отрезка A, что логическое выражение

(¬(x ∈ P ) → ((x ∈ Q) ∨ (x ∈ P ))) →…

Элементами множеств A, P и Q являются натуральные числа, причём:

  • P = {3, 5, 7, 8, 9, 11, 15, 28}
  • Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

Известно, что выражение:

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!