Задание 15 из ЕГЭ по информатике: задача 7

Разбор сложных заданий в тг-канале:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Найдите наибольшее натуральное число A, для которого формула

¬(ДЕЛ(120, A) → ¬ДЕЛ(168, A))

истинна.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 12) → ¬ДЕЛ(x, …

Для какого наименьшего целого числа A выражение

((x − 15 < A) ∧ (17 − y < A)) ∨ (x · (y + 2) > 65)

тождественно истинно, то есть принимает значение 1 при любых целых положительных x и y?

На числовой прямой даны два отрезка: P = [24, 35] и Q = [30, 68]. Укажите наименьшую возможную длину такого отрезка A, что логическое выражение

(¬(x ∈ P ) → ((x ∈ Q) ∨ (x ∈ P ))) →…

2023

Для какого наименьшего целого неотрицательного числа А логическое выражение

(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)

тождественно истинно (т.е. принимает значение 1) при любых целых неотрицатель…