Задание 15 из ЕГЭ по информатике: задача 6
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула
(¬ДЕЛ(x, A) → (ДЕЛ(x, 27) → ¬ДЕЛ(x, 89))) ∧ (A > 300)
тождественно истинна (то есть принимает значение 1) при любом натуральном значении переменной x?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На числовой прямой даны два отрезка: P = [2; 30] и Q = [18; 46]. Укажите наибольшую возможную длину такого отрезка A, что логическое выражение
((x ∈ P) → (x ∈ Q)) → ¬(x ∈ A)
тождес…
Для какого наибольшего целого числа A выражение
((x · x ≤ A) ⋁ (x > 5)) ⋀ ((y · y ≤ A) → (y ≤ 5))
тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных…
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наименьшего натурального числа А формула
(ДЕЛ(x, 12) → ¬ДЕЛ(x, …