Задание 15 из ЕГЭ по информатике: задача 8
Для какого наибольшего целого числа A выражение
((x · x ≤ A) ⋁ (x > 5)) ⋀ ((y · y ≤ A) → (y ≤ 5))
тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях переменных x и y)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наименьшего натурального числа А формула
(ДЕЛ(x, 9) → ¬ДЕЛ(x, 4…
Даны множества P = {3, 6, 12, 22, 54, 103}, Q = {3, 8, 12, 24, 54, 107, 211} и A. Элементами множества являются натуральные числа. Известно, что выражение
(¬(x ∈ A) ∨ ¬((x ∈ Q) ∧ (…
2023
Для какого наименьшего целого неотрицательного числа А логическое выражение
(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)
тождественно истинно (т.е. принимает значение 1) при любых целых неотрицатель…