Задание 15 из ЕГЭ по информатике: задача 21
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наименьшего натурального числа А формула
(ДЕЛ(x, 9) → ¬ДЕЛ(x, 4)) ∨ (x+𝐴 ≥ 100)
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
2023
Для какого наименьшего целого неотрицательного числа А логическое выражение
(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)
тождественно истинно (т.е. принимает значение 1) при любых целых неотрицатель…
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наименьшего натурального числа А формула
(ДЕЛ(x, 12) → ¬ДЕЛ(x, …
Для какого наименьшего целого числа A выражение
((x − 15 < A) ∧ (17 − y < A)) ∨ (x · (y + 2) > 65)
тождественно истинно, то есть принимает значение 1 при любых целых положительных x и y?