Задание 15 из ЕГЭ по информатике: задача 21

Разбор сложных заданий в тг-канале:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 9) → ¬ДЕЛ(x, 4)) ∨ (x+𝐴 ≥ 100)

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Объект авторского права ООО «Легион»

Посмотреть решение

Бесплатный интенсив по информатике

На бесплатном интенсиве ты:
  • 📚 Узнаешь о специфике ЕГЭ на компьютерах
  • 📚 Научишься применять тайм-менеджмент в подготовке
  • 📚 Научишься решать самое интересное задание ЕГЭ из первой части
  • 📚 Отдельно разберём с вами алгебру логики, а также решение 2 задания

Вместе с этой задачей также решают:

Элементами множеств A, P и Q являются натуральные числа, причём:

  • P = {3, 5, 7, 8, 9, 11, 15, 28}
  • Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

Известно, что выражение:

2023

Для какого наименьшего целого неотрицательного числа А логическое выражение

(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)

тождественно истинно (т.е. принимает значение 1) при любых целых неотрицатель…

Для какого наименьшего целого числа A выражение

((x − 15 < A) ∧ (17 − y < A)) ∨ (x · (y + 2) > 65)

тождественно истинно, то есть принимает значение 1 при любых целых положительных x и y?

Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

ДЕЛ(x, A) → (ДЕЛ(x, …