Задание 15 из ЕГЭ по информатике: задача 1
Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула
ДЕЛ(x, A) → (ДЕЛ(x, 6) ∨ ДЕЛ(x, 15))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A > 1 формула
¬ДЕЛ(x, A) → (ДЕ…
Для какого наибольшего целого неотрицательно числа A выражение
(2x + 3y ≥ A) ⋁ (x < 30) ⋁ (y < 16)
тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях пере…
Для какого наибольшего целого числа A выражение
((x · x ≤ A) ⋁ (x > 5)) ⋀ ((y · y ≤ A) → (y ≤ 5))
тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных…