Задание 15 из ЕГЭ по информатике: задача 20

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 34 сек.

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наименьшего натурального числа А формула

(ДЕЛ(x, 12) → ¬ДЕЛ(x, 6)) ∨ (x+𝐴 ≥ 987)

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

¬ДЕЛ(x, A) → (¬ДЕЛ…

2023

Для какого наименьшего целого неотрицательного числа А логическое выражение

(x ≥ 11) \/ (x < y) \/ (x2 + y2 < A)

тождественно истинно (т.е. принимает значение 1) при любых целых неотрицатель…

Для какого наименьшего целого неотрицательно числа A выражение

(x + 2 · y ≤ A) ⋁ (x > 25) ⋁ (y > 12)

тождественно истинно (то есть принимает значение 1 при любых целых неотрицатель…

Элементами множеств A, P и Q являются натуральные числа, причём:

  • P = {3, 5, 7, 8, 9, 11, 15, 28}
  • Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

Известно, что выражение: