Задание 15 из ЕГЭ по информатике: задача 20
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наименьшего натурального числа А формула
(ДЕЛ(x, 12) → ¬ДЕЛ(x, 6)) ∨ (x+𝐴 ≥ 987)
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Элементами множеств A, P и Q являются натуральные числа, причём:
- P = {3, 5, 7, 8, 9, 11, 15, 28}
- Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}
Известно, что выражение:
…На числовой оси даны два отрезка: X = [12; 93] и Y = [54; 150].
Укажите наименьшую возможную длину такого отрезка Z, для которого логическое выражение:
(x ∈ Y) → (¬(x ∈ X) ∧ ¬(x ∈ …
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула
(¬ДЕЛ(x, A) → (ДЕЛ(x, …