Задание 15 из ЕГЭ по информатике: задача 20
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наименьшего натурального числа А формула
(ДЕЛ(x, 12) → ¬ДЕЛ(x, 6)) ∨ (x+𝐴 ≥ 987)
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Элементами множеств A, P и Q являются натуральные числа, причём:
- P = {3, 5, 7, 8, 9, 11, 15, 28}
- Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}
Известно, что выражение:
…Для какого наибольшего целого неотрицательно числа A выражение
(6x + y > A) ⋁ (x < 10) ⋁ (y < 18)
тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях перем…
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Найдите наибольшее натуральное число A, для которого формула
¬(ДЕЛ(120, …