Задание 15 из ЕГЭ по информатике: задача 32

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 6 сек.

Даны множества P = {7, 9, 11, 22, 78, 90, 111}, Q = {7, 11, 16, 34, 78, 90, 154} и A. Элементами множества являются натуральные числа. Известно, что выражение

((x ∈ P) → ((x ∈ Q) ∧ (x ∈ P))) → ¬(x ∈ A)

истинно (т. е. принимает значение 1) при любом значении переменной x. Определите наибольшее возможное количество элементов множества A.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Найдите наибольшее натуральное число A, для которого формула

¬(ДЕЛ(396, A)…

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

(ДЕЛ(x, A) → ¬(ДЕЛ(x, …

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

(ДЕЛ(x, A) → ¬(ДЕЛ(x, …

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Найдите наибольшее натуральное число A, для которого формула

¬(ДЕЛ(120, …