Задание 15 из ЕГЭ по информатике: задача 4

Разбор сложных заданий в тг-канале:

Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A > 1 формула

¬ДЕЛ(x, A) → (ДЕЛ(x, 3) → ¬ДЕЛ(x, 5))

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Найдите наибольшее натуральное число A, для которого формула

¬(ДЕЛ(120, …

Элементами множеств A, P и Q являются натуральные числа, причём:

  • P = {3, 5, 7, 8, 9, 11, 15, 28}
  • Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}

Известно, что выражение:

Для какого наибольшего целого неотрицательно числа A выражение

(2x + 3y ≥ A) ⋁ (x < 30) ⋁ (y < 16)

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях пере…

Для какого наибольшего целого неотрицательного числа А выражение

(20 ≠ 5y + 2x) ⋁ (A < x) ⋁ (A < y)

тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях п…