Задание 15 из ЕГЭ по информатике: задача 4
Обозначим через ДЕЛ (n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A > 1 формула
¬ДЕЛ(x, A) → (ДЕЛ(x, 3) → ¬ДЕЛ(x, 5))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Найдите наибольшее натуральное число A, для которого формула
¬(ДЕЛ(120, …
Элементами множеств A, P и Q являются натуральные числа, причём:
- P = {3, 5, 7, 8, 9, 11, 15, 28}
- Q = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}
Известно, что выражение:
…Для какого наибольшего целого неотрицательно числа A выражение
(2x + 3y ≥ A) ⋁ (x < 30) ⋁ (y < 16)
тождественно истинно (то есть принимает значение 1 при любых целых неотрицательных значениях пере…