Задание 25 из ОГЭ по математике: задача 29

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 44 сек.

К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AM$ проходит через центр окружности и пересекает ее в точках $M$ и $N$. Найдите квадрат расстояния от точки $B$ до прямой $AN$, если $AM=1$, $AB=√ {3}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…

Окружности с радиусами $9$ и $18$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. Н…

В трапеции $KLMN$ боковая сторона $KL$ перпендикулярна основанию $LM$. Окружность проходит через точки $M$ и $N$ и касается прямой $KL$ в точке $S$. Найдите расстояние от точки $S$ до прямой $MN$, е…

В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!