Задание 25 из ОГЭ по математике: задача 28
В окружности радиуса $17{,}5$ проведены диаметр $AB$, хорды $AC$ и $CB$, перпендикуляр $CD$ к диаметру $AB$. Найдите сумму длин хорд $AC$ и $CB$, если $AC:AD=5:3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $37:3$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…
Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?