Задание 25 из ОГЭ по математике: задача 30
К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AC$ пересекает окружность в точках $C$ и $D$. Найдите $AD$, если $AC=1$, $AB=√ {3}$.{
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике $ABC$ биссектриса $BQ$ и медиана $AT$ перпендикулярны, при этом $AT=10$, $BQ=16$. Найдите стороны треугольника $ABC$.
В выпуклом четырёхугольнике $SKLM$ диагональ $SL$ является биссектрисой угла $KSM$ и пересекается с диагональю $KM$ в точке $W$. Найдите $SW$, если известно, что около четырёхугольника $SKLM$ мо…
Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 18$, а углы $B$ и $C$ четырёхугольника равны соответственно $123^°$ и $102^°$.