Задание 25 из ОГЭ по математике: задача 30
К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AC$ пересекает окружность в точках $C$ и $D$. Найдите $AD$, если $AC=1$, $AB=√ {3}$.{
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $ABCD$ основания $AD$ и $BC$ равны соответственно $72$ и $18$, а сумма углов при основании $AD$ равна $90^°$. Найдите радиус окружности, проходящей через точки $A$ и $B$ и касающейся прям…
Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…