Задание 25 из ОГЭ по математике: задача 30
К окружности проведена касательная $AB$ ($B$ — точка касания). Прямая $AC$ пересекает окружность в точках $C$ и $D$. Найдите $AD$, если $AC=1$, $AB=√ {3}$.{
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $37:3$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…