Задание 25 из ОГЭ по математике: задача 31
Центры двух окружностей находятся на расстоянии $√ {80}$. Радиусы окружностей равны $4$ и $8$. Найдите длину общей касательной.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанно…
В треугольнике $ABC$ биссектриса $BM$ и медиана $AN$ перпендикулярны, при этом $AN=8$, $BM=12$. Найдите стороны треугольника $ABC$.
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?