Задание 23 из ОГЭ по математике: задача 23
Прямая, параллельная стороне $AB$ треугольника $ABC$, пересекает стороны $AC$ и $BC$ в точках $M$ и $N$ соответственно. Найдите $AB$, если $CM :MA=1:3$ и $MN =16$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $BD$, если $AC = 24$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $35$ и $12$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.