Задание 23 из ОГЭ по математике: задача 22
Прямая, параллельная стороне $BC$ треугольника $ABC$, пересекает стороны $AB$ и $AC$ в точках $E$ и $F$ соответственно. Найдите $BC$, если $AE : EB = 2 : 3$ и $EF = 15$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В треугольнике $ABC$ через середины $M$ и $N$ сторон $AB$ и $BC$ соответственно проведена прямая. Биссектрисы углов $CAM$ и $NMA$ пересекаются в точке $F$. Найдите $AM$, если $AF=15$ и $FM=8$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.