Задание 23 из ОГЭ по математике: задача 22
Прямая, параллельная стороне $BC$ треугольника $ABC$, пересекает стороны $AB$ и $AC$ в точках $E$ и $F$ соответственно. Найдите $BC$, если $AE : EB = 2 : 3$ и $EF = 15$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Углы $A$ и $B$ треугольника $ABC$ равны соответственно $76^°$ и $59^°$. Найдите радиус $R$ окружности, описанной около треугольника $ABC$, если $AB=√ 2$.
В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $BH$, если $AC=24$ и $HT=6{,}5$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.