Задание 23 из ОГЭ по математике: задача 69

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 25 сек.

Точка $A$, лежащая вне окружности, соединена с концами хорды $BC$ этой окружности. Отрезки $AB$ и $AC$ пересекают окружность соответственно в точках $K$ и $P$, отличных от $B$ и $C$. $K$ лежит между $A$ и $B$, а $P$ — между $A$ и $C$. Найдите длину отрезка $KP$, если $KA=3$ и $AC$ больше $BC$ в ${4} / {3}$ раза.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Медиана $AK$ и биссектриса $BD$ треугольника $ABC$ пересекаются в точке $N$, длина стороны $BC$ относится к длине стороны $AB$, как $4 : 5$. Найдите отношение площади треугольника $BNK$ к площади …

Биссектрисы углов $B$ и $C$ параллелограмма $ABCD$ пересекаются в точке, лежащей на стороне $AD$. Найдите $AD$, если $CD = 14,5$.

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $1$ : $2$ : $3$. Найдите радиус окружности, если меньшая из сторон равна $14$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!