Задание 23 из ОГЭ по математике: задача 69

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 10 сек.

Точка $A$, лежащая вне окружности, соединена с концами хорды $BC$ этой окружности. Отрезки $AB$ и $AC$ пересекают окружность соответственно в точках $K$ и $P$, отличных от $B$ и $C$. $K$ лежит между $A$ и $B$, а $P$ — между $A$ и $C$. Найдите длину отрезка $KP$, если $KA=3$ и $AC$ больше $BC$ в ${4} / {3}$ раза.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите высоту BH ромба ABCD, если она делит сторону AD на отрезки AH=20, DH=9.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=126, расстояние от центра окружности до хорды AB равно 16, а до хорды CD равно 25.

Медиана $AK$ и биссектриса $BD$ треугольника $ABC$ пересекаются в точке $N$, длина стороны $BC$ относится к длине стороны $AB$, как $4 : 5$. Найдите отношение площади треугольника $BNK$ к площади …

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!