Задание 23 из ОГЭ по математике: задача 24

Разбор сложных заданий в тг-канале:

Медиана $AK$ и биссектриса $BD$ треугольника $ABC$ пересекаются в точке $N$, длина стороны $BC$ относится к длине стороны $AB$, как $4 : 5$. Найдите отношение площади треугольника $BNK$ к площади треугольника $ABC$.
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Диагонали $AC$ и $BD$ трапеции $ABCD$ пересекаются в точке $O$ ($BC$ и $AD$ — основания трапеции). Площади треугольников $AOD$ и $BOC$ равны соответственно $36 см^2$ и $16 см^2$. Найдите площадь трапе…

Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=16,2, BH=5.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!