Задание 23 из ОГЭ по математике: задача 24

Разбор сложных заданий в тг-канале:

Медиана $AK$ и биссектриса $BD$ треугольника $ABC$ пересекаются в точке $N$, длина стороны $BC$ относится к длине стороны $AB$, как $4 : 5$. Найдите отношение площади треугольника $BNK$ к площади треугольника $ABC$.
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=16,2, BH=5.

Окружность с центром на стороне $MN$ треугольника $MNP$ проходит через вершину $N$ и касается прямой $MP$ в точке $P$ . Найдите диаметр окружности, если $MP = 16$, $MN = 20$.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!