Задание 23 из ОГЭ по математике: задача 24

Разбор сложных заданий в тг-канале:

Медиана $AK$ и биссектриса $BD$ треугольника $ABC$ пересекаются в точке $N$, длина стороны $BC$ относится к длине стороны $AB$, как $4 : 5$. Найдите отношение площади треугольника $BNK$ к площади треугольника $ABC$.
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=16,2, BH=5.

Точка $K$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AK = 3$, $AB = 12$.

Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=24$ и $CD=18$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $AC$, если $AM=36$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!