Задание 23 из ОГЭ по математике: задача 102

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 50 сек.

Средняя линия трапеции, в которую вписана окружность, равна $10$. Найдите сумму боковых сторон трапеции.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.…

Расстояние от точки $O$, являющейся серединой основания $AC$ равнобедренного треугольника $ABC$, до стороны $BC$ равно $14$. Найдите углы треугольника, если его основание равно $56$. Ответ дай…

Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!