Задание 23 из ОГЭ по математике: задача 102
Средняя линия трапеции, в которую вписана окружность, равна $10$. Найдите сумму боковых сторон трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.…
Расстояние от точки $O$, являющейся серединой основания $AC$ равнобедренного треугольника $ABC$, до стороны $BC$ равно $14$. Найдите углы треугольника, если его основание равно $56$. Ответ дай…
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.