Задание 23 из ОГЭ по математике: задача 28

Разбор сложных заданий в тг-канале:

В $△MPK$ стороны $MK$, $MP$ и $PK$ равны $8$, $6$, $4$ соответственно. Точка $N$ расположена вне треугольника $MPK$, причём отрезок $NK$ пересекает сторону $MP$ в точке, отличной от $P$ . Известно, что треугольник с вершинами $N$ , $M$ и $K$ подобен исходному. Найдите косинус угла $MNK$ , если $∠NMK > 90^°$
Так как задание второй части, ответ тут получится дробный, так и запишите его, к примеру: $5/13$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Радиус вписанной в прямоугольный треугольник окружности равен 4. Найдите его площадь, если гипотенуза данного треугольника равна 10.

Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=42, расстояние от центра окружности до хорды AB равно 20, а до хорды CD равно $√517$.

Средняя линия трапеции, в которую вписана окружность, равна $10$. Найдите сумму боковых сторон трапеции.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!