Задание 23 из ОГЭ по математике: задача 27
В $△ABC$ стороны $AC$, $AB$ и $BC$ равны $10$, $7$ и $5$ соответственно. Точка $D$ расположена вне треугольника $ABC$, причём отрезок $CD$ пересекает сторону $AB$ в точке, отличной от $B$. Известно, что треугольник с вершинами $D$, $C$ и $A$ подобен исходному. Найдите косинус угла $ADC$, если $∠DAC > 90^°$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).
Биссектриса угла $B$ параллелограмма $ABCD$ пересекает его сторону $CD$ в точке $K$. Найдите площадь параллелограмма $ABCD$, если $CK = 8$, $KD = 3$, а $∠BCD = 150^°$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.