Задание 23 из ОГЭ по математике: задача 72

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 2 сек.

В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ угол $BAD$ равен $30^°$. Найдите угол $CDA$, если известно, что он является тупым, $AB=12$ и $CD=√ {72}$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=15, AB=CQ=20, BQ=10, AC=38. Найдите PQ.

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно $13$, а одна из диагоналей ромба равна $52$. Найдите углы ромба.
Так как задание второй части, тут нужно на…

Хорды окружности $AB$ и $CD$ равны соответственно $30$ и $16$. Расстояние от центра окружности $O$ до хорды $CD$ равно $15$. Найдите расстояние от центра окружности $O$ до хорды $AB$.

Биссектриса угла $C$ параллелограмма $ABCD$ пересекает его сторону $AD$ в точке $F$. Найдите площадь параллелограмма $ABCD$, если $FD = 9$, $AF = 2$, а $∠ADC = 150^°$

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!