Задание 23 из ОГЭ по математике: задача 72

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 53 сек.

В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ угол $BAD$ равен $30^°$. Найдите угол $CDA$, если известно, что он является тупым, $AB=12$ и $CD=√ {72}$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольник $ABCD$, одна из сторон которого равна $8$, вписана окружность. Найдите периметр этого прямоугольника.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Хорды окружности $AB$ и $CD$ равны соответственно $30$ и $16$. Расстояние от центра окружности $O$ до хорды $CD$ равно $15$. Найдите расстояние от центра окружности $O$ до хорды $AB$.

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно $13$, а одна из диагоналей ромба равна $52$. Найдите углы ромба.
Так как задание второй части, тут нужно на…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!