Задание 23 из ОГЭ по математике: задача 72
В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ угол $BAD$ равен $30^°$. Найдите угол $CDA$, если известно, что он является тупым, $AB=12$ и $CD=√ {72}$. Ответ дайте в градусах.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Углы $A$ и $B$ треугольника $ABC$ равны соответственно $76^°$ и $59^°$. Найдите радиус $R$ окружности, описанной около треугольника $ABC$, если $AB=√ 2$.
Хорды окружности $AB$ и $CD$ равны соответственно $30$ и $16$. Расстояние от центра окружности $O$ до хорды $CD$ равно $15$. Найдите расстояние от центра окружности $O$ до хорды $AB$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.