Задание 23 из ОГЭ по математике: задача 73

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 55 сек.

Биссектрисы углов $A$ и $D$ при основании равнобедренной трапеции $ABCD$ пересекаются в точке $M$, лежащей на основании $BC$. Найдите $AB$, если $BC=38$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Углы $M$ и $N$ треугольника $MPN$ равны соответственно $72^°$ и $78^°$. Найдите $MN$, если радиус окружности, описанной около треугольника $MPN$, равен $6$

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Диагонали $AC$ и $BD$ трапеции $ABCD$ пересекаются в точке $O$ ($BC$ и $AD$ — основания трапеции). Площади треугольников $AOD$ и $BOC$ равны соответственно $36 см^2$ и $16 см^2$. Найдите площадь трапе…

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!