Задание 23 из ОГЭ по математике: задача 73
Биссектрисы углов $A$ и $D$ при основании равнобедренной трапеции $ABCD$ пересекаются в точке $M$, лежащей на основании $BC$. Найдите $AB$, если $BC=38$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Биссектрисы углов $B$ и $C$ параллелограмма $ABCD$ пересекаются в точке, лежащей на стороне $AD$. Найдите $AD$, если $CD = 14,5$.
В трапеции $MNPK$ боковые стороны $MN$ и $PK$ равны, $PA$ — высота, проведённая к большему основанию $MK$. Найдите длину отрезка $AK$, если средняя линия $CD$ трапеции равна $12$, а меньшее основа…