Задание 23 из ОГЭ по математике: задача 19
Прямая, параллельная основаниям трапеции $MNPK$, пересекает её боковые стороны $MN$ и $PK$ в точках $A$ и $B$ соответственно. Найдите длину отрезка $AB$, если $NP = 15$, $MK = 24$, $PB$ : $BK$ = $5$ : $4$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.
Углы $A$ и $B$ треугольника $ABC$ равны соответственно $76^°$ и $59^°$. Найдите радиус $R$ окружности, описанной около треугольника $ABC$, если $AB=√ 2$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.