Задание 23 из ОГЭ по математике: задача 32
Найдите угол $ABO$, если его сторона $AB$ касается окружности с центром в точке $O$, а дуга $AC$, заключённая внутри этого угла, равна $120^°$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Биссектрисы углов при основании $AC$ равнобедренного треугольника $ABC$ пересекаются в точке $M$. Отрезок $EF$, концы которого $E$ и $F$ лежат соответственно на сторонах $AB$ и $BC$, проходит чере…
Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.