Задание 23 из ОГЭ по математике: задача 32
Найдите угол $ABO$, если его сторона $AB$ касается окружности с центром в точке $O$, а дуга $AC$, заключённая внутри этого угла, равна $120^°$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).
Биссектриса угла $B$ параллелограмма $ABCD$ пересекает его сторону $CD$ в точке $K$. Найдите площадь параллелограмма $ABCD$, если $CK = 8$, $KD = 3$, а $∠BCD = 150^°$.
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.