Задание 23 из ОГЭ по математике: задача 33
В трапеции $ABCD$ боковые стороны $AD$ и $BC$ равны, $BK$ — высота, проведённая к большему основанию $CD$. Найдите длину отрезка $CK$, если средняя линия $MN$ трапеции равна $15$, а меньшее основание $AB$ равно $4$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Около четырёхугольника $BKPC$ описана окружность. Продолжения противоположных сторон $BK$ и $CP$ этого четырёхугольника пересекаются в точке $A$, лежащей вне окружности. $K$ лежит между $A$ и …
В прямоугольном треугольнике катет и гипотенуза равны соответственно 5 и 13. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.