Задание 23 из ОГЭ по математике: задача 33
В трапеции $ABCD$ боковые стороны $AD$ и $BC$ равны, $BK$ — высота, проведённая к большему основанию $CD$. Найдите длину отрезка $CK$, если средняя линия $MN$ трапеции равна $15$, а меньшее основание $AB$ равно $4$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ …
Радиус вписанной в прямоугольный треугольник окружности равен 1. Найдите его площадь, если гипотенуза данного треугольника равна 9.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.