Задание 23 из ОГЭ по математике: задача 33

Разбор сложных заданий в тг-канале:

В трапеции $ABCD$ боковые стороны $AD$ и $BC$ равны, $BK$ — высота, проведённая к большему основанию $CD$. Найдите длину отрезка $CK$, если средняя линия $MN$ трапеции равна $15$, а меньшее основание $AB$ равно $4$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.

Точка $H$ является основанием высоты $BH$, опущенной из вершины прямого угла $B$ треугольника $ABC$ к гипотенузе $AC$. Найдите $AC$, если $AB=18$ и $AH=8$.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=36, BH=4.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!