Задание 23 из ОГЭ по математике: задача 31

Разбор сложных заданий в тг-канале:

Отрезки $MN$ и $PK$ лежат на параллельных прямых, а отрезки $MK$ и $NP$ пересекаются в точке $A$. Найдите $MA$, если $MN = 16$, $PK = 20$, $MK = 27$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=48, расстояние от центра окружности до хорды AB равно 7, а до хорды CD равно 15.

Углы $A$ и $B$ треугольника $ABC$ равны соответственно $63^°$ и $87^°$. Радиус $R$ окружности, описанной около треугольника $ABC$, равен $15$. Найдите $AB$.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.

Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 4:12:8. Найдите радиус описанной около этого треугольника окружности, если меньшая …

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!