Задание 23 из ОГЭ по математике: задача 98
В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $HT$, если $AC=42$ и $BH=20$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Периметр параллелограмма $ABCD$, описанного около окружности, равен $40$. Найдите стороны этого параллелограмма.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
В трапеции $ABCD$ боковые стороны $AD$ и $BC$ равны, $BK$ — высота, проведённая к большему основанию $CD$. Найдите длину отрезка $CK$, если средняя линия $MN$ трапеции равна $15$, а меньшее основа…