Задание 23 из ОГЭ по математике: задача 98

Разбор сложных заданий в тг-канале:

В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $HT$, если $AC=42$ и $BH=20$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!