Задание 23 из ОГЭ по математике: задача 30
Отрезки $AD$ и $BC$ лежат на параллельных прямых, а отрезки $AB$ и $CD$ пересекаются в точке $M$. Найдите $AB$, если $AD = 12$, $BC = 15$, $MB = 7$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки $MN$ и $PK$ лежат на параллельных прямых, а отрезки $MK$ и $NP$ пересекаются в точке $A$. Найдите $MA$, если $MN = 16$, $PK = 20$, $MK = 27$.
Углы $A$ и $B$ треугольника $ABC$ равны соответственно $63^°$ и $87^°$. Радиус $R$ окружности, описанной около треугольника $ABC$, равен $15$. Найдите $AB$.
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 4:12:8. Найдите радиус описанной около этого треугольника окружности, если меньшая …