Задание 23 из ОГЭ по математике: задача 95
В трапеции $ABCD$ c основаниями $BC=20$ и $AD=70$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $CF:FD$, если $EF=50$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая, параллельная стороне $AB$ треугольника $ABC$, пересекает стороны $AC$ и $BC$ в точках $M$ и $N$ соответственно. Найдите $AB$, если $CM :MA=1:3$ и $MN =16$.
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.