Задание 23 из ОГЭ по математике: задача 95
В трапеции $ABCD$ c основаниями $BC=20$ и $AD=70$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $CF:FD$, если $EF=50$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность с центром на стороне $AC$ треугольника $ABC$ проходит через вершину $A$ и касается прямой $BC$ в точке $B$. Найдите диаметр окружности, если $BC = 18$, $AC = 24$.
В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=72,25, BH=16.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.