Задание 23 из ОГЭ по математике: задача 96
В трапеции $ABCD$ c основаниями $BC=20$ и $AD=60$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $EF$, если $CF:FD=2:3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.