Задание 23 из ОГЭ по математике: задача 96

Разбор сложных заданий в тг-канале:

В трапеции $ABCD$ c основаниями $BC=20$ и $AD=60$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $EF$, если $CF:FD=2:3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите площадь трапеции, диагонали которой равны $8$ и $15$, а средняя линия равна $8{,}5$.

Отрезки $MN$ и $PK$ лежат на параллельных прямых, а отрезки $MK$ и $NP$ пересекаются в точке $A$. Найдите $MA$, если $MN = 16$, $PK = 20$, $MK = 27$.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!