Задание 23 из ОГЭ по математике: задача 96
В трапеции $ABCD$ c основаниями $BC=20$ и $AD=60$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $EF$, если $CF:FD=2:3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки $MN$ и $PK$ лежат на параллельных прямых, а отрезки $MK$ и $NP$ пересекаются в точке $A$. Найдите $MA$, если $MN = 16$, $PK = 20$, $MK = 27$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.