Задание 23 из ОГЭ по математике: задача 96
В трапеции $ABCD$ c основаниями $BC=20$ и $AD=60$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $EF$, если $CF:FD=2:3$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Прямая, параллельная стороне $AB$ треугольника $ABC$, пересекает стороны $AC$ и $BC$ в точках $M$ и $N$ соответственно. Найдите $AB$, если $CM :MA=1:3$ и $MN =16$.
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:28:22. Найдите радиус описанной около этого треугольника окружности, если меньша…